登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>WSN双迭代栅格扫描定位算法

WSN双迭代栅格扫描定位算法

96    2020-12-22

¥0.50

全文售价

作者:危华明

作者单位:南宁学院信息工程学院,广西 南宁 530200


关键词:无线传感器网络;栅格扫描;近似角匹配;双迭代;Log-normal模型


摘要:

针对无线传感器网络(WSN)中的定位算法在不规则通信信号传播模型下存在定位误差较大的问题,提出双迭代栅格扫描定位算法。由Grid-Scan算法得到初始位置估计,当满足近似角匹配算法和迭代扫描算法的定位条件时,通过锚节点迭代扫描算法缩小定位区域内的栅格数量产生位置估计,再采用近似角匹配算法得到一个位置估计,将该位置估计作为下一次锚节点迭代扫描的初始位置。该方法主要运用近似角匹配法不断改变锚节点迭代扫描法的初始位置,而锚节点迭代扫描算法可缩小定位区域,从而形成两层迭代。当满足迭代终止条件时,双迭代停止,并得到最终的位置估计。仿真结果表明:在Log-normal模型下,结合近似角匹配的双迭代定位算法具有较好的定位效果。


Dual-iteration grid-scan localization algorithm for WSN
WEI Huaming
College of Information Engineering, Nanning University, Nanning 530200, China
Abstract: Aiming at the problem that the localization algorithm in a wireless sensor network (WSN) has a large localization error in the irregular communication signal propagation model, dual-iteration Grid-Scan algorithm is proposed. The initial position estimation can be obtained by Grid-Scan algorithm. When localization conditions of the approximate angle matching algorithm and the iteration scan algorithm are satisfied, the number of grids in the localization area is reduced by the anchor node iteration scan algorithm, and the position estimation is also generated. The approximate angle matching algorithm is used to generate a new iteration position. The dual-iteration localization algorithm mainly uses the approximate angle matching method to constantly change the initial position of the anchor node iteration scan method, and the anchor node iteration scan method can narrow the localization area for the approximate angle matching method, thus forming a two-layer iteration. When iteration termination conditions are satisfied, the dual-iteration scan stops and the final position estimation can be obtained. The simulation results show that the dual- iteration localization algorithm combined with approximate angle matching has better positioning effect in Log-normal model.
Keywords: wireless sensor network;Grid-Scan;approximate angle matching;dual-iteration;Log-normal model
2020, 46(12):135-141  收稿日期: 2020-11-12;收到修改稿日期: 2020-11-30
基金项目: 广西高等教育本科教学改革工程项目(2018JGB380)
作者简介: 危华明(1985-),男,广西南宁市人,讲师,硕士,研究方向为计算机应用
参考文献
[1] MAO G, FIDAN B, ANDERSON B D O. Wireless sensor network localization techniques[J]. Computer Networks, 2007, 51(10): 2529-2553
[2] VANHEEL F, VERHAEVERT J, LAERMANS E, et al. Pseudo-3D RSSI-based WSN localization algorithm using linear regression[J]. Wireless Communications & Mobile Computing, 2015, 15(9): 1342-1354
[3] LIU J, WANG Z, YAO M, et al. VN-APIT: virtual nodes-based range-free APIT localization scheme for WSN[J]. Wireless Networks, 2016, 22(3): 867-878
[4] CHOI H, BAEK Y, LEE B. Efficient congestion control utilizing message eavesdropping in asynchronous range- based, localization[J]. Etri Journal, 2013, 35(1): 35-40
[5] CABERO J M, OLABARRIETA I, GIL-LÓPEZ S, et al. Range-free localization algorithm based on connectivity and motion[J]. Wireless Networks, 2014, 20(8): 2287-2305
[6] LI S L, DING X Y, YANG T T. Analysis of five typical localization algorithms for wireless sensor networks[J]. Wireless Sensor Network, 2015, 7(4): 27-33
[7] 宋海声, 周浩, 朱长驹, 等. 二次栅格扫描与三角形质心迭代的定位算法[J]. 计算机工程与科学, 2019, 41(2): 268-274
[8] 宋海声, 周浩, 沈伟, 等. 二次栅格扫描与锚节点递减栅格扫描的定位算法[J]. 计算机应用研究, 2020, 37(4): 1179-1182
[9] PHOEMPHON, S, SO-IN C, NGUYEN T G. An enhanced wireless sensor network localization scheme for radio irregularity models using hybrid fuzzy deep extreme learning machines[J]. Wireless Networks, 2016, 24(3): 1-21
[10] JIANG J A, CHUANG C L, LIN T S, et al. Collaborative localization in wireless sensor networks via pattern recognition in radio irregularity using omnidirectional antennas[J]. Sensors, 2010, 10(1): 400-427
[11] ZHOU G, HE T, KRISHNAMURTHY S, et al. Models and solutions for radio irregularity in wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2006, 2(2): 221-262
[12] 罗清华, 焉晓贞, 彭宇, 等. 圆外切Bounding-box WSN定位方法[J]. 哈尔滨工程大学学报, 2015, 36(4): 567-572
[13] 彭宇, 罗清华, 王丹, 等. 基于区间数聚类的无线传感器网络定位方法[J]. 自动化学报, 2012, 38(7): 1190-1199
[14] 黄炎, 樊渊. 基于锚节点连通性的移动WSN定位优化算法[J]. 传感技术学报, 2017, 30(12): 1925-1932
[15] 陶为戈, 朱昳华, 贾子彦. 基于RSSI混合滤波和最小二乘参数估计的测距算法[J]. 传感技术学报, 2012, 25(12): 1748-1753
[16] DUAN L, GUAN T, YANG B. Registration combining wide and narrow baseline feature tracking techniques for markerless AR systems[J]. Sensors, 2009, 9(12): 10097-10116
[17] YUAN M L, ONG S K, NEE A Y C. Registration using natural features for augmented reality systems[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(4): 569-580
[18] 张会清, 石晓伟, 邓贵华, 等. 基于BP神经网络和泰勒级数的室内定位算法研究[J]. 电子学报, 2012, 40(9): 1876-1879
[19] LIU Y, YI X, HE Y. A novel centroid localization for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2012, 2012: 1-8
[20] SRINIVASA N R, VEERANJANEYULU C. Improved grid-scan localization algorithm for wireless sensor networks[J]. Journal of Engineering, 2014, 2014: 1-5

tt游戏网上娱乐 申博快速充值中心 宝马会娱乐城网址 澳门永利最新佣金 沙龙娱乐城备用网址
澳门网络金沙开户 澳门金沙网投 银联国际赌场在线 天堂娱乐帐号在线投注 澳门娱乐场登入
申博138国际娱乐官网直营 星际娱乐场盘口 菲律宾申博现金官方网 永盛贵宾会开户 新葡京免费试玩
卡迪拉娱乐城备用网址 久赢国际登录网址 申博138开户 金木棉彩票洗码 澳门百乐宫电脑版